

STEAM Robotics for Children Four to Seven+

Agenda

Company Overview
What is KIBO
Curriculum + PD
Show and Tell
Questions

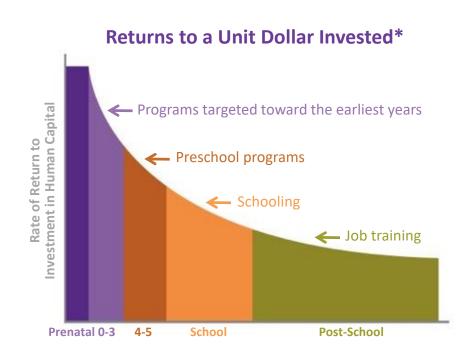
Company Overview: Meet KIBO

KIBO is a robotic kit for 4+ yearolds to build, program, decorate, and bring their own robot to life!

- Mission: Universal STEAM Literacy
- Method: Fun, educational STEAM platform for early childhood
- Benefits: Skills and confidence in STEAM thinking and collaboration

Why We Do What We Do

STEAM Literacy: A Problem that Matters


Demand for STEAM education is growing

- Increased STEAM requirements for both STEAM and non-STEAM jobs
- Competitiveness: US students 27th in math
- Achievement gaps: gender, race, economic

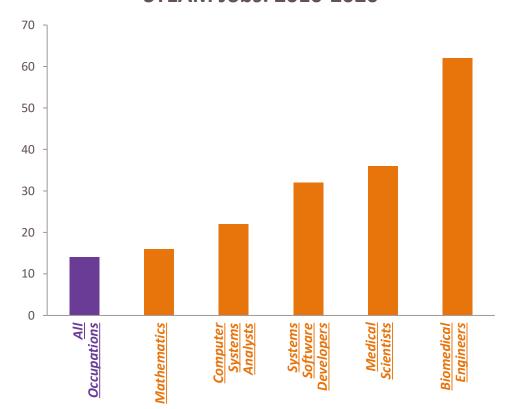
Early childhood is the right time to introduce STEAM, but most solutions focus on older kids

- Developmental: 33% drop in interest by 4th grade
- Economic: J. Heckman, Nobel Prize

Most elementary school teachers not prepared to teach STEM

Societal Impact for STEAM Solutions

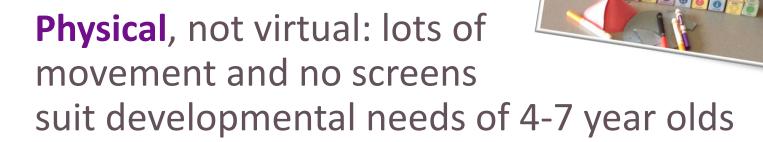
Reduce achievement gap


- Reduce gender, racial, and economic inequalities of STEAM literacy
- Increased STEAM literacy impacts both STEAM and non-STEAM jobs

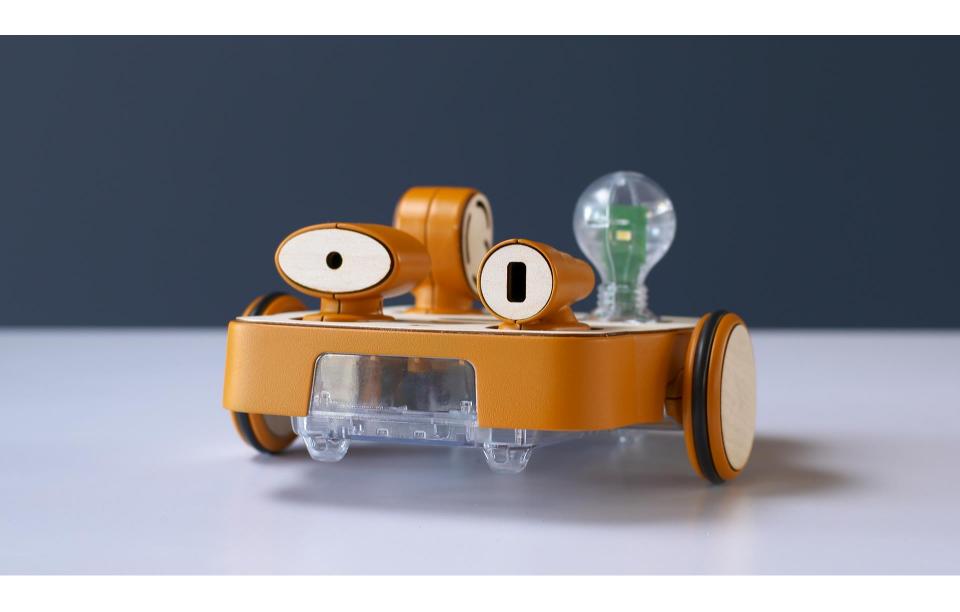
More STEAM-literate citizenry make better civic decisions

 Health, technology, economic, security, environment, etc.

Improve economic competitiveness of country

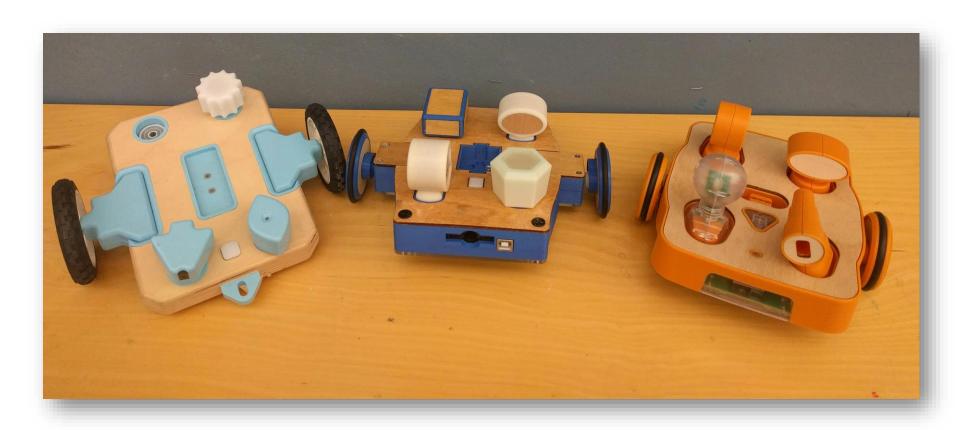

Projected Percentage Increases in STEAM Jobs: 2010-2020

KIBO is...


Based on **20 years** of academic and field research at Tufts University and elsewhere

Designed for open-ended expressive play integrating **STE(A)M** concepts

Easy to integrate into school curricula



Building Blocks and Parameters

About Us and Our History

Meet the Team: Our Founders

Professor Marina Umaschi Bers, Chief Science Officer

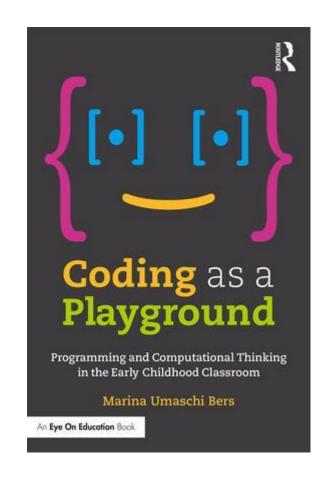
- Professor of Child Development at Tufts (PhD MIT)
- TED talk and 5 books about STEAM in early childhood
- http://ase.tufts.edu/devtech/

Mitch Rosenberg, CEO

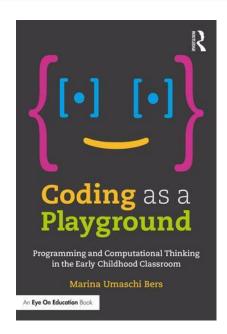
- Executive, marketing, product management, sales, operations experience at 6 venture-backed firms, including Kiva Systems, Rethink Robotics, PictureTel, Automatix
- MSEE MIT, MBA Boston
 University

Professor Marina Umaschi Bers

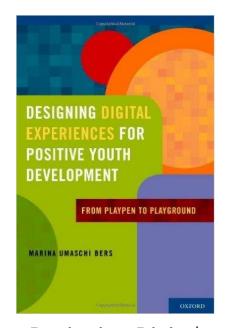
- KinderLab Chief Scientist
- Professor of Child
 Development and
 Computer Science at Tufts
 University, where she
 heads the DevTech
 research group
- Led research behind KIBO and co-developed Scratch Jr.

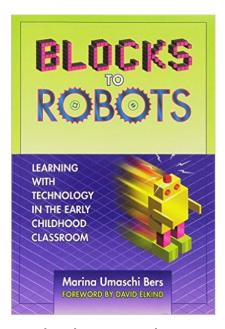


Research is Our Backbone


"Researchers and practitioners have long relied on Bers' deep understanding of early childhood computer science education and turned to her vision for the future of the field for inspiration and guidance. Her ideas have influenced my own philosophy of education, including the work at Code.org. In Coding as a Playground, Bers consolidates her ideas into practical recommendations that any CS education advocate can apply."

Pat Yongpradit, Chief Academic Officer, Code.org




Dr. Bers' Research

Coding as a Playground (2017)

Designing Digital Experiences for Positive Youth Development (2012)

Blocks to Robots (2007)

Additional Papers and research can be found at www.kinderlabrobotics.com/research-articles

KIBO: STEAM Made Tangible and Playful

Efficacy Proven in over 20 years of research and Kid-Tested

- Skills: 62% Improvement in sequencing skills in Kindergarten
- Attitudes: 85% increase in girls' agreement with "Enjoy being engineer"
- Success in both public and private schools, plus libraries, museums, after-school programs, and camps

Corporate Milestones

- Founded as C-Corp in May 2013
 - Based on previous NSF research grants to Tufts University
- Kickstarter 2014: \$80,000
- NSF/SBIR Grant Funded: Phase I, Phase IB, Phase II
- Social Impact Forum Accelerator 2016
- Singapore Playmaker Program: buys \$240,000 of KIBOs – https://www.youtube.com/watc h?v=2ltLPPtA1BY
- Global media coverage

A Trusted Partner

Trends

- Total Customers: 1,800 customers with over 6,000 kits
- New Customers: Average of 30 new customers per month
- Enterprise Customers: 100+
 customer sites with over 10 kits
- R&D: Continuous product and curriculum extensions
 - Examples: KIBO 21 jumped to 10% of units, 65 LEGO Extensions sold in first 30 days
 - New products contributed 25% of revenue growth

Why Coding for 4-7 Year Olds?

- Children engage with technology as active producers rather than passive consumers
- Expand children's self-image as comfortable with technology and engineering
- "Make coding the playground."

-Bers, M. (2012). Designing Digital Experiences for Positive Youth Development: From Playpen to Playground. Cary, NC: Oxford.

Computational Thinking

KIBO fosters seven "powerful ideas" of computational thinking described by Bers (2017):

- 1) Algorithms
- 2) Modularity
- 3) Control Structures
- 4) Representation
- 5) Hardware/Software
- 6) The Design Process
- 7) Debugging

Computational Thinking + Child Development

Computational Thinking Skill	Child Development Skills and Attributes
Algorithms	Sequencing / logical order (foundational math + literacy skill)
Modularity	Breaking a large job up Writing (and following) instructions
Control Structures	Recognizing patterns Cause and effect
Representation	Symbolic representations (e.g. writing)
Hardware / Software	Recognizing that technology is not "magic" Recognizing objects that are human-made
Design Process	Problem solving, perseverance Editing and revision (as in writing)
Debugging	Identifying problems / checking your work "Grit"

Bers, M.U., (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. New York, NY: Routledge press

Why (KIBO) Robotics?

- Young children learn by:
 - Moving, doing, and making (Piaget, Papert)
 - Experimenting,
 playing, and
 collaborating (Vygotsky)

- KIBO is screen free and gets kids moving
 - Learning reinforced by movement
- Block-based programming is tangible

Parts, Not Magic

From S.T.E.M...

Science,

ASK

IMAGINE

SHARE

Look What We Made!

60

CREATE

TEST & IMPROVE

Technology,

Engineering,

Mathematics

To S.T.E.A.M.

Science,
Technology,
Engineering,
Arts,
Mathematics

 The ease of building and decorating KIBO allows teachers to implement KIBO successfully to support diverse STEAM curricula (Sullivan, Strawhacker, Bers 2017)

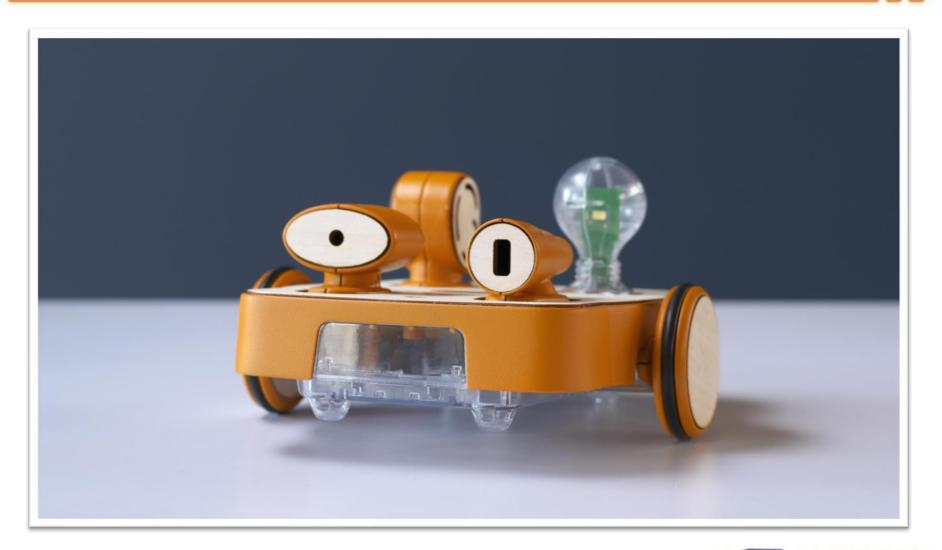
KIBO: STEAM Literacy for Pre-K – 2nd Grade

Designed to be age-appropriate

- Tangible and kinetic learning, not abstract
- Creative, open-ended, fun

Introduces key STEAM principles with proven efficacy

- Coding, sequencing, building, sensors, variables
- Meta-principles: problem solving, collaboration, integration with other disciplines
- Developed from over 20 years of research in Early Childhood STEAM literacy

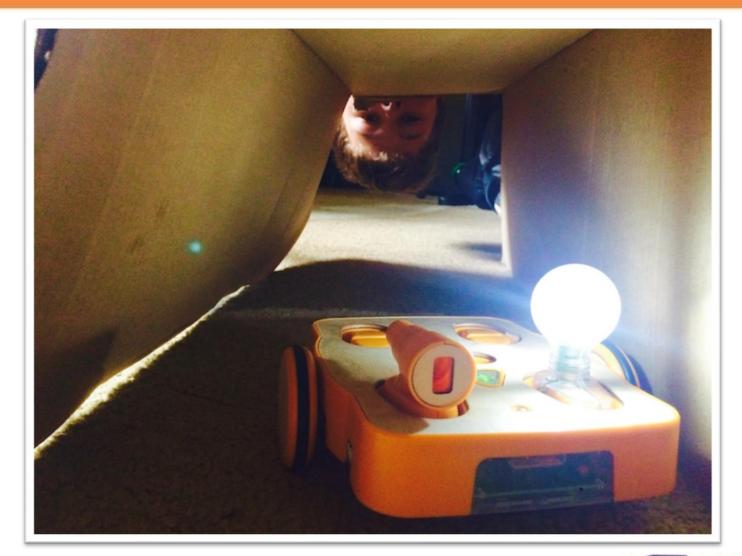

Easy for educators

- Integrates into curriculum standards
- Teacher support materials and curriculum
- No PC or IT support required

What is KIBO?

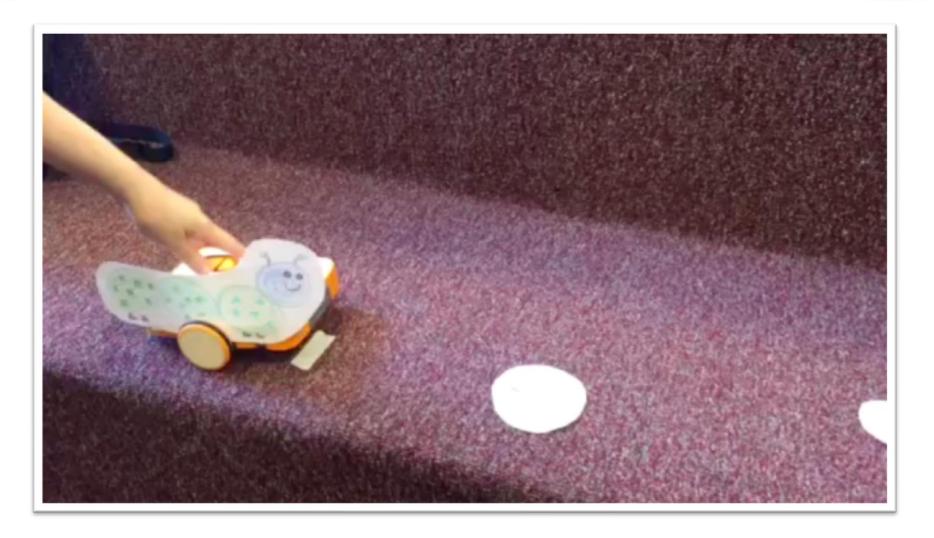
KIBO is... a Dancer

KIBO is... an Imaginary Car



KIBO is... a Butterfly in its Habitat

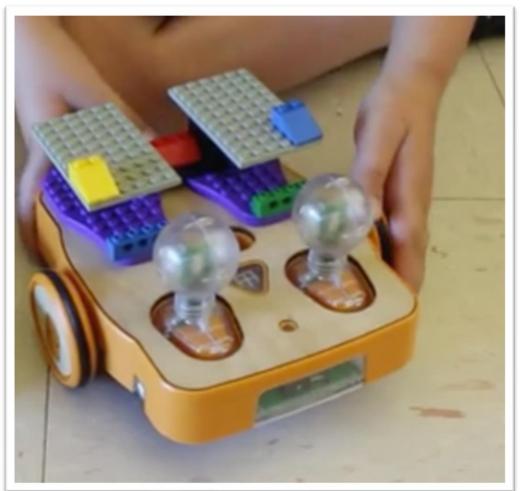
KIBO is... a Cave Explorer

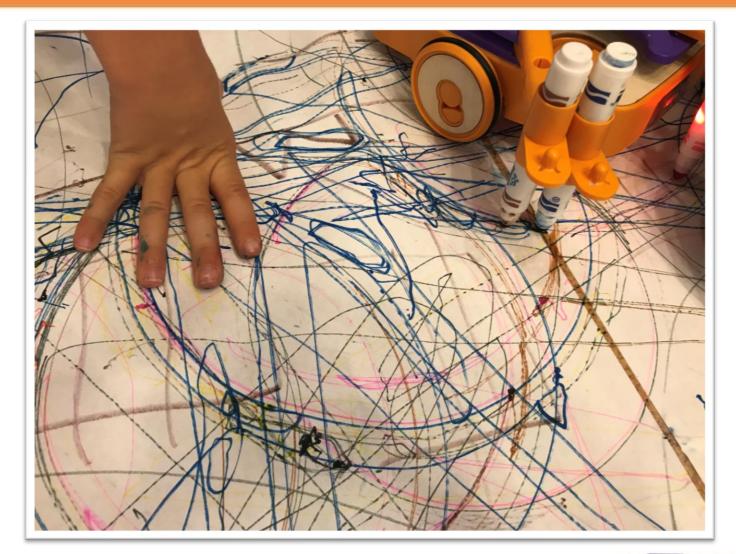


KIBO is... a Bowling Ball

KIBO is... a (Very) Hungry Caterpillar

KIBO is... "not-Blue" Jay


KIBO is... Goin' On a Bear Hunt

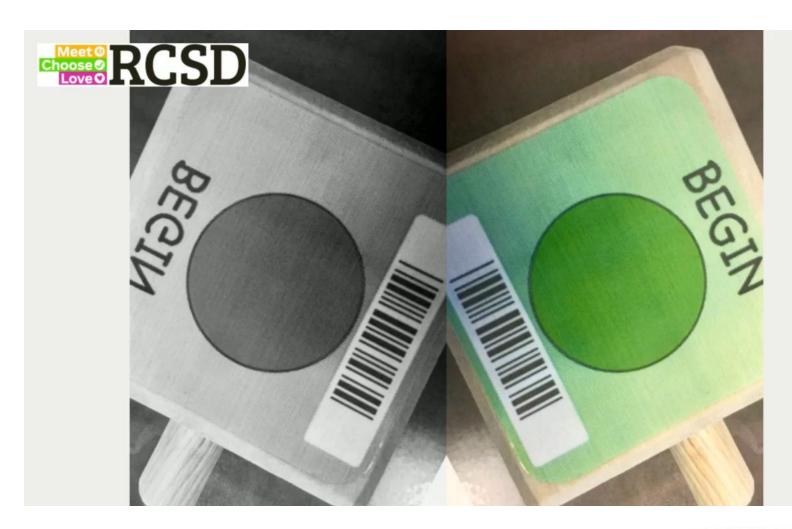

KIBO is... an Interactive Sculpture

KIBO is... an Artist

Creative Play and Expression

KIBO is all of this...

...because
KIBO is
anything
children
imagine.


KIBO is a robot kit that lets 4-7 year olds **build**, **decorate** and **code** their imagined creations.

Coding with John Gill Elementary School

Going on a Bear Hunt with KIBO

KIBO Assembly and Scanning

https://youtu.be/MeWAaSTQE5c

STEAM Literacy with KIBO

KIBO Curriculum Philosophy

Working with KIBO involves:

- Computational thinking (Programming)
- The Engineering Design Process (Building)

KIBO Curriculum Guide

- Creating with KIBO is the core curriculum from KinderLab
- Provides 20-40 hours of instruction, divided into 1-2 hour lessons
- Can be integrated with a wide range of subjects

KIBO Curriculum Lesson Plans

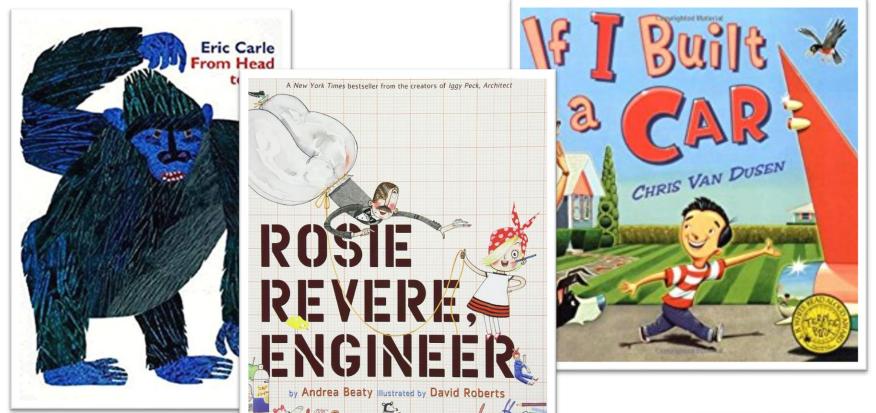
Lesson	Main Activity and Objective
Lesson 1: Sturdy Building	The students will create models out of craft and recycled materials, then they will test the sturdiness of their models by dropping them from ankle height, then revising them to make them stronger. Students learn about: The Engineering Design Process
Lesson 2: What is a Robot?	Children share and learn ideas about what robots are. They are introduced to KIBO robotics concepts. Children will then think creatively in order to design, build, and test their own "dream car" robotic vehicles. Students learn about: Robots and their parts
Lesson 3: Hokey Pokey	Children choose the appropriate instructions and learn the importance of sequence as they program their robots to dance the Hokey Pokey. Students learn about: Programming KIBO
Lesson 4: What are Repeats?	Students will learn about new programming blocks that make the robot repeat other instructions. They use these new blocks to program robot vehicles to "drive around the block" by repeating commands. Students learn about: "Repeat" and loops

KIBO Curriculum Lesson Plans (cont.)

Lesson	Main Activity and Objective
Lesson 5: What are Sensors? (Part 1)	The KIBO robots will use sound sensors and the Wait For Clap block to sing and dance to the "If You're Happy and You Know It" song. Students learn about: Robotic sensors, the KIBO Sound Sensor
Lesson 6: What are Sensors? (Part 2)	KIBO robots will run in the Robot Olympics! In this activity, each robot will run one leg of a relay race and use a distance sensor or light sensor to stop when their part of the race is done and it reaches its teammate. Students learn about: KIBO Distance and Light Sensors
Lesson 7: What are "Ifs"?	Robots do different activities based on the state of a light sensor. On a map on the floor, robots drive to school if it is light and back home if it is dark. Students learn about: "If" and branching
Lesson 8: Final Project	Students work together to build and program a KIBO robot to demonstrate their understandings and ideas related to the robotics and programming curriculum as well as the content of the project theme or topic. A final showcase or demonstration inviting friends and family and school community members is strongly encouraged!

Learning through Play: KIBO Says

"KIBO Says" Game



Introduce KIBO commands through active play.

Contextualization

Activities introduced with age-appropriate books, familiar routines, favorite activities.

KIBO Does the "Hokey-Pokey"

https://youtu.be/oXBdq3sC9EQ

KIBO Within Your Curriculum

Watch KIBO Engineering within a Pre-K classroom

KIBO Within Your Curriculum

Watch KIBO reenact the famous Iditarod Race

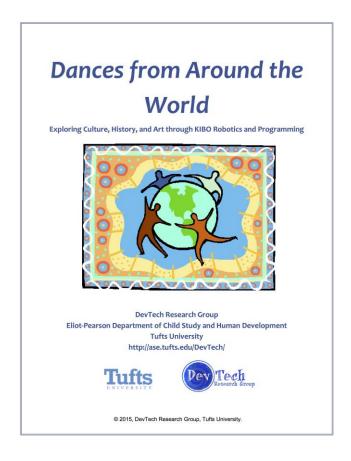
KIBO Module-Specific Activity Guides

Activity Guides offer 40 more classroom hours of cross-curricular STEAM activities with KIBO extensions.

 Explore connections to literacy and language, engineering and architecture, mathematics, performing arts, and visual arts.

Curriculum Package Additional Materials

We support teachers with additional materials:


- Introductory Activity Cards
- Engineering Design
 Journals and Assessment
 Workbooks
 (for each student)
- Classroom Posters
- "KIBO Says" Cards for physical games

Integration With Other Subjects

- KIBO Curriculum is built to integrate with other subjects.
- Teachers can integrate the curriculum themselves, or leverage the work of our partners at Tufts University.
- Tufts DevTech's model integrated curricula include:
 - Dances from Around the World (cultural studies)
 - Robotic Animals (science)
 - Treasure Island (literacy)
 - Patterns All Around (math and engineering)

KIBO Classroom Package – Activity Center

This package is designed to serve **4 to 6 students** with the KIBO 18 or KIBO 21 robot.

Includes:

- 2 KIBO 18 or 21 kits
- Pack of 6 Engineering Design Journals
- Pack of 6 Assessment Workbooks
- Activity Guide Cards
- KIBO Curriculum
- "KIBO Says", class programming game
- Two posters: KIBO and Engineering Process
- Two hours of Professional Development Consultation via phone or skype

KIBO Classroom Package – Small Classroom

This package is designed to serve **10 to 15 students** with the KIBO 18 or KIBO 21 robot.

Includes:

- 5 KIBO 18 or 21 kits
- Pack of 12 Engineering Design Journals
- Pack of 12 Assessment Workbooks
- Activity Guide Cards
- KIBO Curriculum
- "KIBO Says", class programming game
- Two posters: KIBO and Engineering Process
- Two hours of Professional Development Consultation via phone or skype

KIBO Classroom Package – Large Classroom

This package is designed to serve **20 to 30 students** with the KIBO 18 or KIBO 21 robot.

Includes:

- 10 KIBO 18 or 21 kits
- Pack of 25 Engineering Design Journals
- Pack of 25 Assessment Workbooks
- Activity Guide Cards
- KIBO Curriculum
- "KIBO Says", class programming game
- Two posters: KIBO and Engineering Process
- Two hours of Professional Development Consultation via phone or skype

KIBO Research-Based Enhancements

Expression Module

Sound Record and Playback Module

Building Brick Extension Set

KIBO Research-Based Enhancements

Marker Extension Kit

Professional Development

- Train-the-trainer
- On-site
- Remote Webinars
- Training will cover:
 - Product operation
 - Research foundation
 - Curriculum review
 - Integration approaches
 - Support requirements

Scale Adoption

- 1. Deepen Current Curriculum: product connections with geometry and literacy
- 2. Broaden Curriculum: Product enhancements that introduce additional STEAM topics, regardless of curriculum
- 3. Accessibility: Research value to students with disabilities
- 4. Universality: Reduce cost to make STEAM literacy available to broader population

How is KIBO Different from All the Others

How is KIBO Different?

- KIBO is the ONLY robot kit that can be built, programmed, and decorated by kids as young as 4 years old.
- Tangible programming language for educational robots
- Offers a unique art platform to add the "A" in STEAM
- Thought leadership: Professor
 Marina Bers is recognized worldwide authority on STEAM education
- First mover advantage in STEAM for young children
- Requires no screens or keyboards

Questions?

Product Demo – Your Turn!

